

Version Control

v1.0 15/03/2016 Creation All members

v2.0 20/03/2016 Revision All members

v3.0 21/03/2016 Proofreading and formatting Christopher Treadgold

v4.0 21/032016 Implementing supervisor feedback,
Editing

All members

v4.1

30/05/2016 Adding Roles to stakeholder table Miguel Saavedra

Table of Contents
Terms of Reference 3

Project Rationale 4

Project Plan 4

Scope and Objectives 5

 ​Main Objectives 5

 ​Extension Objectives 5

 ​Deliverables 6

 ​Deadline 6

Project Approach 6

 ​Waterfall vs Scrum 6

 ​Kanban vs Scrum 7

 ​Phases 7

 ​Tasks 7

Skills and Knowledge 8

 ​Research Phase 8

1

 ​Development Phase 8

 ​Programming Platforms 9

 ​Upskilling 9

Estimate Of Costs 9

 ​Summary of Projected Costs 10

 ​Software Costs 10

 ​Development Costs 10

 ​Hardware Costs 11

 ​Upskilling Costs 11

Figures 12

 ​Cost Estimates 12

 ​Risk Matrix 13

 ​Quality Assurance Plan 14

 ​Basic Project Architecture 16

 ​Stakeholder Register 17

Glossary of Terms 18

References 18

Disclaimer 19

2

Terms of Reference

Cloud House has been acquired recently by Bulletproof and is in the process of merging with its

parent company, so from this point on we will refer to our client as Bulletproof.

Bulletproof is one of the leading Amazon Web Services (AWS) Premier Consulting Partners within the

Asia-Pacific region. They build professional solutions using AWS/consult in the use of AWS for various

businesses across Australasia. They also offer a number of other services, including, but not limited to:

● Migration of services to the cloud.

● Optimisation of scaling and speed for cloud services.

● Assuring stability and security of cloud services with compliance to industry standards.

● Custom AWS solution development.

This project was conceived by Jordan Grieg, co-founder and Chief Technical Officer (CTO) of Cloud

House (currently transitioning to a role within bulletproof) in order to capitalise on a gap in the

market. That is, that there is no well supported Content Management System (CMS) that runs on AWS

Lambda. The reason this is considered a worthwhile undertaking is that use of AWS Lambda rather

than a server will reduce costs to businesses and individuals for hosting websites. It will also provide

an easier way to develop and deploy simple websites due to not having to deal with setting up a

server. The primary goal of this project is to get more people using AWS, and to have Bulletproof be

the company that made it possible, drawing more customers to them in the long run.

In order to achieve our goal we plan to make the CMS open-source, the aim being to utilise the skill

and interest of the open-source community on GitHub.

James Burton is a corporate handyman at Bulletproof meaning his job fills many gaps within the

business including marketing, human resources and website content management. James studied at

the University of Otago majoring in Business Commerce as well as working at FutureTech before he

moved to Cloud House/Bulletproof. He is is our main contact with Bulletproof.

Jordan Grieg will also be assisting us, focusing more on the technical aspects of the project.

3

Project Rationale

Bulletproof currently provides custom AWS solutions where clientele can utilize cloud servers for

hosting, testing and development. The advantages of their product are known throughout the

industry. They provide easy to use, well-documented web API’s with great flexibility. This makes it

easy for their clients to build new applications for AWS or to migrate existing applications to the

cloud.

AWS provides rapidly scalable, high performance cloud services that are reliable and highly secure.

AWS is extremely cost effective with not nearly as much overhead as using traditional servers since

customers are billed for only the AWS resources they use such as compute power and storage. All of

these features scale up to even powerhouse web applications such as Netflix and Apple’s icloud, both

of which run purely on AWS.

Through meetings with the client we have outlined the following reasons to pursue this project:

● A CMS tool using AWS Lambda would have lower overhead and setup time than a

server-based approach due to code only being run as needed with no need to set up entire

new servers as demand increases, or remove servers as demand decreases.

● A CMS tool using AWS Lambda even has lower overhead and setup time compared to the

usual cloud server approaches such as AWS EC2. This is because even with cloud servers new

instances still have to be spun up and down as demand shifts up and down.

● The Client wishes to encourage use of AWS and considers this project a great way to get

people using AWS both through the people who use the CMS and through people who

contribute to its open-source development. This increase in AWS users should result in more

customers for Bulletproof.

Project Plan

We have created a Gantt Chart to plan our project (see artefact. 1). We are assuming that all team

members will contribute 10 hours per week to the project. Once each team member has completed

training in AWS we will begin sprinting. There will be a total of of seven two week sprints for

development, followed by one for client acceptance testing. Providing that testing is successful we will

have successfully created and delivered a Minimum Viable Product(MVP) by the standards of

Bulletproof.

Remaining time after this delivery until the end of the semester will be spent eliciting feedback from

open-source developers about the future of the project, as well as working with interested parties to

4

deploy the software and spreading the word about our project online through channels such as blogs

and forums.

Scope and Objectives

Bulletproof has an overall idea of what they want but does not have all of the details. We as the

project group have been given a fair amount of flexibility in influencing these details as we are

expected to both design and create the Lambda based CMS.

Though it would be possible to elicit the entirety of the requirements before starting on design and

creation of the project, doing so could take several months, severely limiting the time we would have

to actually make the CMS. Therefore we have decided to begin right away and adapt to the changing

requirements as they are made apparent.

With our decision to accept that much of the requirements will be unknown at this stage, we are

currently limited in regards to how specific the project scope can be. As such we have been fairly

broad in defining scope elements and will refine them as a more concrete idea develops of what we

are creating. Despite this we hope this section can still provide valuable insight into where we are

heading and what we must complete to get there.

Main Objectives

The overall goal of this project is to provide a functioning AWS Lambda CMS for Bulletproof. The CMS

must be able to be used to create a blog and company website with basic functionality. Bulletproof

wishes for the CMS to be considered, by their own definitions, an MVP (Minimum Viable Product) by

its completion. Some things that should be easy to implement with the CMS are:

● Blog post implementation.

● Adding custom web pages.

● Login page.

● Administrative dashboard linked to certain accounts.

● Membership dashboard for each member.

Security

We will be designing and developing our own security model for authentication and authorization of

the AWS CMS. The purpose of implementing our own security model is due to the lack of pre built

security modules provided by Amazon. We will be using industry standard one way hashed and salted

password authorization for providing access to administrative functionality.

5

Extension Objectives

Should we produce a functioning MVP CMS and still have additional time to spend, we would spend

any additional time adding functionality such as:

● Payment processing support.

● Localization options e.g. multiple language support.

● Pluggable modules for quick additions of website functionality.

Deliverables

● Scrum reflection, at the end of each sprint.

● Burndown chart, updated at the end of each sprint.

● Scrum Product backlog, updated at the beginning of sprints and as needed.

● A functioning website created using the CMS such as a company website or blog.

● Git repository of product.

● Meeting minutes, at least weekly.

● Product wiki.

○ Documentation for users.

○ Development details for us and for open source developers.

○ On release we will open the wiki to modification so that ongoing development can be

documented by open source developers.

Deadline

The project should reach the point of being considered an MVP on or before 14/09/16 as specified by

Bulletproof. Project should be wrapped up by 02/11/16.

Project Approach

As detailed at the beginning of the Scope and Objectives section we have a limited understand of

requirements currently as well as a short time frame from project start to project completion, and so

we have decided an agile approach is best. Specifically, we have decided to use Scrum due to its

ability to excel in environments of high uncertainty as well as at the suggestion of Bulletproof. In

addition Bulletproof is extremely knowledgeable in Scrum, meaning we can take this as an

opportunity to enhance our Scrum knowledge with their assistance.

6

Waterfall vs Scrum

The waterfall methodology was an option we considered when discussing methodologies, however

we opted not to use it. A primary reason for this is that the waterfall method requires the gathering of

all requirements before moving on to the design phase, which would take several months, and is this

not viable for this project due to our short time frame. Scrum does not have a strict requirements

gathering phase and so is more suitable an approach for our project than waterfall. Some other

reasons we consider the waterfall methodology to be unsuitable are:

● Having to follow each phase of the waterfall methodology strictly creates a lot of overhead

time where we must make sure each phase has been closed appropriately, giving us less time

to work on the actual work that needs to be done in each phase.

● The waterfall methodology is well known for being more susceptible to scope creep than agile

methodologies due to the lower level of interaction with the client during creation of the

product. With strict deadlines due to AUT we can not afford to let scope creep cost us

additional time.

Kanban vs Scrum

Kanban, like Scrum, is an agile methodology and as such has similar advantages over the waterfall

methodology as Scrum. Unlike Scrum, Kanban is an ongoing process that is not broken down into time

units, and as such doesn’t have an explicit time or reflection and acceptance testing with the client. As

a team we highly value getting feedback from the client, and so we opted for the methodology with

the more explicit feedback mechanism.

Phases

Scrum does not have phases in a traditional sense, with units of progress called sprints. Sprints can

range anywhere from one week to several months but tend to be on the shorter end of that scale so

as to iterate quickly. Quick iterations help keep projects flexible, allowing for changing requirements.

We have opted for a sprint length of 2 weeks both at the suggestion of bulletproof and from

discussions internally.

Tasks

We will keep a product backlog to monitor and select tasks. Team members will select tasks at the

beginning of sprints or once they have finished their current tasks. We aim to limit tasks so that they

can be completed in a number of days to a week, with tasks exceeding this being split into several

7

smaller tasks. Tasks will be added at the beginning of each sprint and will be prioritised (based on

estimated importance) by the client with additional tasks added as required. The number of tasks

completed compared to the number of tasks that we predicted to be completed during that sprint will

be what is used to create and update the burndown chart at the end of each sprint.

To ensure no one gets stuck on a task, and that tasks are being completed on time, we will have a

daily standup meeting. This meeting will take place in person at least once per week, with the

remaining standups being held using an online communication tool such as Google Hangouts or Slack.

Skills and Knowledge

This project team is comprised of four members, all of whom are confident in their ability to work as a

team and conduct themselves professionally at all stages of the project. Three members of the team

are from software development and computer science backgrounds, with the fourth member of our

team from a Networks and Security background.

Research Phase

The first stage of the project will be a market research phase. We have to look into what users of AWS

would desire in this CMS and what could convince them to use it. Some of the skills required by the

team are:

Skill Team member with skill

Software Design All Members

Analyse current CMS solutions John

Requirements Engineering Chris, Miguel, Adam

Effective Communication All Members

Development Phase

The next stage of the project will be when we code and ship the project, this will require strong

software engineering and development skills, the skills required include:

8

Skill Team member with skill

Programming Knowledge All Members

Solutions Engineering All Members

SEO - Search Engine Optimisation All Members have some knowledge

Understanding of the HTTP protocol John

AWS Skills No Members

Programming Platforms

The following programming platforms will be used throughout the project and all team members who

do not have them will have to develop them during the project.

Skill Team member with skill

Node.JS No Members

AWS Lambda No Members

HTML All Members

Bootstrap John, Chris, Miguel

Database Administration All Members

Git Chris, Adam, Miguel

Upskilling

The team has most of the skills that will be needed. The exceptions to this are the Node.js

programming language and knowledge of the Amazon Web Services stack. To fulfill the need for AWS

knowledge we will be using resources provided by Bulletproof over the two weeks from the twenty

fourth of March until the 12th of April. This overlaps with the time we will spend designing the end

product as it will be an individual learning exercise. During this time the team will also apply

themselves to learning how to use the Node.js platform, building on their knowledge of Javascript to

learn this framework.

9

Estimation Of Costs

For this project, the client will not be charged for the production of the software they have requested,

instead the costs associated with the production will be evaluated in “Man Hours” (“Man-hour |

Define man-hour at Dictionary.com”, 2016). There will however be a monetary figure listed within the

Cost Estimates table, to indicate the hours dedicated by the team and supervisor.

Summary of Projected Costs

As we will be assessing the cost for this project in terms of hours worked, and having an end date for

the production of the CMS being September 14th 2016. We have calculated a total of 14 weeks

available for design, development, testing, and handover to the client.

The client has offered to pay each member $30 per hour, till we have gained certification in AWS

development after which the pay will increase to $50 per hour.

Software Costs

To reduce software costs, we will use as many free tools as possible. The only exceptions being

Atlassian’s JIRA (“​JIRA Software - Issue & Project Tracking for Software Teams | Atlassian​”, 2016) and

Atlassian’s Confluence (“​Confluence - Team Collaboration Software | Atlassian​”, 2016), each of which

cost of $10 a month, for a total cost of $20 per month.

JIRA will be the main tool for the creation, management, and processing of requirements for this

project. The Team will use JIRA Agile (a part of JIRA with features specific to Agile methodologies) for

creation and management of the Scrum product backlog. It will also be used for other Scrum artefacts

(burndown chart, velocity tracking).

Confluence is a secondary tool provided by Atlassian, which is a tool available at an additional cost as

a part of JIRA (see cost estimates). The Team will be using Confluence for the creation of project

management artefacts, as a document repository, and as an internal Wiki for project info.

10

Development Costs

Each member of the team will require access to AWS, the cost of using AWS will be provided by

Bulletproof who will be requesting $5000 worth of computation time from Amazon. This cost will be

enough cover the costs for all phases of the project.

GitHub (“How people build software - GitHub”, 2016) will be our online repository for project code, as

well as being a place to download a copy of the CMS tool upon project completion. GitHub is free.

Selenium (“Selenium - Web Browser Automation”, 2016) will be the web browser based automated

test platform for the project. Selenium will be used to record a set of given instructions (interactions)

with the CMS via a web browser, and will allow the team to create a set of records which can be run

at any time to assert expectations from web page interactions.

Hardware Costs

For this project, the Team will be taking advantage of the fact that each member already owns a

suitable device for development and testing (laptops, desktops, etc). As such, Bulletproof will not

incur the cost of providing development machines.

Upskilling Costs

Bulletproof has agreed to provide each team member with access to an online learning facility (Linux

Academy) for 2 months. Access to Linux Academy costs $157NZD per month for 4 users, which

Bulletproof has agreed to cover.

Bulletproof has also agreed to cover the cost of the AWS Certified Developer (Associate level)

certification as a part of the upskilling process, a one off cost of $224NZD per member.

The training period will be over of 2 weeks. This will mean 1 less sprint is available for the actual

production of the project, however the training is necessary for the success of the project.

The Team will also be required to learn node.js, Bootstrap and a few other tools to successfully

complete this project, part of which will take place during the training period of 2 weeks. This will be

done using free online tutorials.

11

Figures

Cost Estimates

Descriptor Quantity Cost Total

Supervisor

Waqar Hussain 108 $147.00 $15,876.00

Developer Training

Adam Campbell 20 $30.00 $600.00

Miguel Saavedra 20 $30.00 $600.00

John Cave 20 $30.00 $600.00

Chris Treadgold 20 $30.00 $600.00

Developers

Adam Campbell 280 $50.00 $14,000.00

12

Miguel Saavedra 280 $50.00 $14,000.00

John Cave 280 $50.00 $14,000.00

Chris Treadgold 280 $50.00 $14,000.00

Software

JIRA 8 $10.00 $80.00

Confluence 8 $10.00 $80.00

Hardware

Devices to access
project tools

4 $0.00 $0.00

Training (Lambda) 2 $214.00 $214.00

Certification 4 $224.00 $896

 Subtotal $75,536.00

 GST 15% $11,330.40

 Total $86,866.40

Risk Matrix

Risk Likelihood Impact on
Project

Response Plan

Misunderstanding
requirements

1 High Communicate with the client frequently,
ensuring that any features we implement fit
with their vision of the finished product.

Minor team conflicts 2 Medium Introduce more structure to the discussion,
note points down one after the other and
make decisions from a more neutral
standpoint.

Finished product has a
number of bugs

3 High Utilize quality assurance methods and
extensive software testing before
deployment.

13

Lack of external Client
Communication

4 High Ensure the client is updated frequently on the
project progress using slack and holding as
frequent meetings as possible.

Lack of Team
Communication

5 High Remind team members that are not
communicating the impediments factors of
the project and rules within the team
agreement.

Lack of learning resources 6 Medium Make sure the client provides sufficient
learning resources in a timely manner.

Planning project
deliverables poorly

7 High Setting tasks with a buffer of 1.5 times longer
than our initial estimation of its duration.

Change Supervisor 8 Low The new Supervisor will swiftly be informed of
the project and the current status with use of
the project charter and various other scrum
and extreme programming artefacts.

Change/Loss of Team
member(s)

9 High Assess leaving team member’s workload and
decide whether to cut scope, request an
extension or divide work amongst available
members.

Quality Assurance Plan

Procedures How Why

Development Phase

Sprint Acceptance
Testing

Presenting the product to the client at the
end of each sprint with a sprint review to get
feedback on what we’ve implemented.

To ensure that the product
meet the clients
requirements.

Integration Testing Throughout the course of the development
of a feature through a sprint integration
testing occurs when that feature is being
merged into the stable main branch.

To ensure that the main
branch is stable and working
features are implemented.

Bug Protocols 1. The Bug name, details and priority
are added in the intra-sprint issue

To make bug fixing as simple
and transparent as possible.

14

log. The bug is rated high if the bug
impedes progress, medium if it
affects the functioning of the
program in a significant way, and low
otherwise.

2. Bugs in the issue log are fixed..
3. If all bugs are not fixed before the

beginning of the next sprint, add the
remaining bugs to the overall issue
log.

Documentation
Protocols

Document appropriately and update the
project wiki frequently.

- Comment all code
- The functionality it performs
- The Parameter use

- When recording on the online wiki
the functional use of the deliverable
products functions are briefly
explained, what parameters are used
and what other functions does it
interact with.

- Each class file will have a change log,
where each change must be logged
with the Editor's name, date and
what has been changed.

To increase maintainability
and make development of
the product easier.

Coding Style Each developer will have to adopt similar
coding and documenting styles.
We will be following the coding standards
found in F​elixge​’s ​node-style-guide​ (“Js Node
Coding Style - Github” - 2016).

To keep code readable and
understandable.

Github Integrity Team members should only make a pull
request once all branches in the local
repository have been merged to to the local
main.

This main branch will only be updated once
changes have been approved by another
developer and the Lead developer.

Prevents problems being
introduced to the main
branch.

15

https://github.com/felixge
https://github.com/felixge/node-style-guide

Github Branch
Management

The main branch will be managed by the
Lead developer meaning that they are the
only person that is allowed to accept pull
requests.

To reduce conflict between
different merged code.

Github Merging
Practice

All pull requests are overseen by the lead
and secondary developers, who then decide
to approve or deny merging that branch.

This allows second person to
spot bugs or problems with
the code that one person
may have not seen on their
own.

Github Commit
Practice

Every commit to a branch a developer is
working on has to contain comments that
have the functional aspects of the user story
and current medium to high priority bugs.

This will allow for readability
when tracking versions of the
product, making it easier to
find where a bug may have
originated.

Testing Phase/End of
Sprint

Unit testing Selenium will be our tool to automate
written unit tests that are for stress test and
help check for logical and syntax errors
within the code.

This will reduce the time it
takes compared to manually
testing the code, leaving
more time for other things.

Exploratory testing ➢ Reviewing the logical program path
➢ Finding where it may fail
➢ Making a small statement of what a

the test case will accomplish
➢ Testing to achieve the result

Exploratory testing allows our
developers to create further
tests to ensure the resilience
and security of the product

Post Sprint

Showcasing Amended Deliverables will be shown to the
client at the end of each sprint for client
correspondence and feedback.

This will make sure that the
product meets the needs of
the client.

16

Basic Project Architecture

This is a high level conceptual model of the client interaction with the AWS CMS application. It

contains a subset of the services provided by AWS which are required to achieve success within this

project. These services mentioned are based on a subset of the model of Amazon's Web Application

Hosting architecture (“Amazon Web Application Hosting”, 2016).

Access to the back-end server side code will be managed using the AWS JavaScript SDK (“AWS SDK for

JavaScript in the Browser”, 2016). The JavaScript SDK will allow client interactions with the front end

to request event triggers through Lambda, calling server side code for data processing. Being a web

application, this will in turn result in a web page being sent back to the client.

17

Stakeholder Register

Bulletproof

Name Role Phone Email Background Influence

James
Burton

Community
Manager

021 405
877

james@cloud.ho
use

Art Director, Business
Development,
Marketing, Design

Moderate

Jordan
Grieg

CTO/Founder 09 869 2888 jordan@cloud.ho
use

Solutions Architect,
Cloud Infrastructure

High

Scott
Judson

CEO/Founder 09 869 2888 scott@cloud.hou
se

Management, Cloud
Services, Mobile
Applications

High

Research and Development Team

Name Role Phone Email Background

Waqar Hussain Supervisor - whussain@aut.ac.nz Lecturer

Name ID Number Phone Role Email Major(s)

Adam Campbell 1311607 021 255
6332

Lead Developer npw8877
@aut.ac.nz

Software
Development,
Computer
Science

Miguel Saavedra 13826904 021 124 5734 Team Leader, Scrum
Master, Developer

hdf3153@
autuni.ac.n
z

Software
Development

Chris Treadgold 1399164 027 380 5215 Developer hfv6430@
autuni.ac.n
z

Computer
Science

John Cave 1324776 022 109 1268 Lead Tester, Developer mxy3233@
aut.ac.nz

Networking
and Security

18

Glossary of Terms

Term Definition

AWS Amazon Web Services; a selection of useful services packaged for use by
programmers for their Cloud needs.

Lambda An AWS service that allows code to be run without the programmer
needing to manage the server it runs upon.

CMS Content Management System - a tool used by technical and non-technical
people to easily create and manage website(s).

Github A free, hosted software collaboration tool used by open-source projects to
maintain their source code.

SEO Search Engine Optimisation; the process of making a website easily
understandable to robots such as those used to find Google results.

Repository Central location where data is stored

References

Google Docs - create and edit documents online, for free. (2016). Retrieved March 20, 2016 from

https://www.google.co.nz/docs/about/

Js Node Coding Style - (2016). Retrieved Retrieved March 21, 2016

From ​https://github.com/felixge/node-style-guide

Microsoft Word | Document and Word Processing Software. (2016). Retrieved March 20, 2016, from

https://products.office.com/en-us/word

How people build software - GitHub. (2016). Retrieved March 20, 2016, from https://github.com/

JIRA Software - Issue & Project Tracking for Software Teams | Atlassian. (2016). Retrieved March 20,

2016, from ​https://www.atlassian.com/software/jira

19

https://www.google.co.nz/docs/about/
https://github.com/felixge/node-style-guide
https://products.office.com/en-us/word
https://www.atlassian.com/software/jira

Confluence - Team Collaboration Software | Atlassian. (2016). Retrieved March 20, 2016, from

https://www.atlassian.com/software/confluence

Slack: Be less busy. (2016). Retrieved March 20, 2016, from ​https://slack.com/is

Selenium - Web Browser Automation. (2016). Retrieved March 20, 2016, from

http://www.seleniumhq.org/

Man-hour | Define man-hour at Dictionary.com. (2016). Retrieved March 20, 2016, from

http://www.dictionary.com/browse/man-hour

AWS SDK for JavaScript in the Browser. (2016). Retrieved March 20, 2016, from

https://aws.amazon.com/sdk-for-browser/

Amazon Web Application Hosting. (2016). Retrieved March 20, 2016, from

http://media.amazonwebservices.com/architecturecenter/AWS_ac_ra_web_01.pdf

What is Exploratory testing in software testing?. (n.d.). Retrieved March 20, 2016, from

http://istqbexamcertification.com/what-is-exploratory-testing-in-software-testing/

Disclaimer

Clients should note the general basis upon which the Auckland University of Technology undertakes

its student projects on behalf of external sponsors:

While all due care and diligence will be expected to be taken by the students, (acting in software

development, research or other IT professional capacities), and the Auckland University of

Technology, and student efforts will be supervised by experienced AUT lecturers, it must be

recognised that these projects are undertaken in the course of student instruction. There is therefore

no guarantee that students will succeed in their efforts.

This inherently means that the client assumes a degree of risk. This is part of an arrangement, which

is intended to be of mutual benefit. On completion of the project it is hoped that the client will

receive a professionally documented and soundly constructed working software application, some

part thereof, or other appropriate set of IT artefacts, while the students are exposed to live external

environments and problems, in a realistic project and customer context.

In consequence of the above, the students, acting in their assigned professional capacities and the

20

https://www.atlassian.com/software/confluence
https://aws.amazon.com/sdk-for-browser/
http://media.amazonwebservices.com/architecturecenter/AWS_ac_ra_web_01.pdf
http://istqbexamcertification.com/what-is-exploratory-testing-in-software-testing/

Auckland University of Technology, disclaim responsibility and offer no warranty in respect of the

“technology solution” or services delivered, (e.g. a “software application” and its associated

documentation), both in relation to their use and results from their use.

21

22

